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Translational invariance in nucleation theories: Theoretical formulation
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The consequences of spontaneously broken translational invariance on the nucleation-rate statistical prefac-
tor in theories of first-order phase transitions are analyzed. A hybrid, semiphenomenological approach based on
field-theoretic analyses of condensation and modern density-functional theories of nucleation is adopted to
provide a unified prescription for the incorporation of translational-invariance corrections to nucleation-rate
predictions. A connection between these theories is obtained starting from a quantum-mechanical Hamiltonian
and using methods developed in the context of studies on Bose-Einstein condensation. An extremum principle
is used to derive an integro-differential equation for the spatially nonuniform mean-field order-parameter
profile; the appropriate order parameter becomes the square root of the fluid density. The importance of the
attractive intermolecular potential is emphasized, whereas the repulsive two-body potential is approximated by
considering hard-sphere collisions. The functional form of the degenerate translational eigenmodes in three
dimensions is related to the mean-field order parameter, and their contribution to the nucleation-rate prefactor
is evaluated. The solution of the Euler-Lagrange variational equation is discussed in terms of either a proposed
variational trial function or the complete numerical solution of the associated boundary-value integro-
differential problem. Alternatively, if the attractive potential is not explicitly known, an approach that allows
its formal determination from its moments is presented.
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I. INTRODUCTION

Nucleation theory has been a controversial topic for o
70 years now. It has attracted interest not only as a c
study for the understanding of phase transitions within
framework of statistical mechanics, but also for such imp
tant applications as condensation of vapor droplets
cavitation/bubble formation in liquids. The original work o
Becker and Do¨ring @1# ~based on the earlier work of Volme
and Farkas!, and subsequently refined by Zeldovich@2#,
forms what is now referred to as classical nucleation theo
For the simplicity of such a theory, its predictions are
remarkably good agreement with experiments, especially
garding the supersaturation dependence of the classical
of nucleation@3#. However, it is now accepted that classic
nucleation theory does not predict correctly the tempera
dependence of the nucleation rate: for the range of exp
mentally studied temperatures, the classical theory under
dicts the observed rates by several orders of magnitude~usu-
ally three to six orders! @4#.

A proposal by Lothe and Pound@5# to resolve the discrep
ancy between classical and experimental predictions t
gered a long-standing controversy in the field. They s
gested that inclusion of the droplet’s translational a
rotational degrees of freedom in the calculation of the nuc
ation rate would modify classical predictions by a factor
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101421019. Reiss, Katz, and Cohen@6# suggested a differen
calculation of the translational correction~in addition argu-
ing that there is no rotational contribution! that was severa
orders of magnitude smaller. Subsequent counterargum
@7# left this an open problem, thereby questioning the val
ity of classical nucleation theory and, more generally,
formulation of a consistent theory of nucleation.

More recently, Oxtoby and co-workers@8–10#, as well as
Barrett@11#, used density-functional theory to alleviate the
discrepancies. In fact, Talanquer and Oxtoby@9# argued that
corrections due to translational invariance are almost ne
gible. Moreover, detailed attempts of semiempirical fits@10#
seem to overestimate the temperature dependence o
nucleation rate~except at very low temperatures!. Ford @12#
argued that nucleating clusters, as described by the clas
theory, do not satisfy the two nucleation theorems that re
their properties to the supersaturation and temperature
pendence of the rate. He suggested that the discrep
emerges from the classical nucleation theory assumption
the free energy of the nucleating droplet refers to a fix
cluster rather than to one that may nucleate anywhere in
system volume.

In this work, rather than proposing an entirely new a
proach~since, for example, the correct prediction of the s
persaturation dependence suggests that there are some
arguments in the classical theory!, we will attempt a hybrid
approach to establish a connection between classical den
functional theories of nucleation and earlier work on fie
theoretic descriptions of condensation. In doing so, we w
obtain a consistent formalism that will incorporate in a u
fied way all the dependences of the nucleation rate includ
the translational correction.

Our starting point will be Langer’s field-theoretic ap

h-
c-
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Y. DROSSINOS, P. G. KEVREKIDIS, AND P. G. GEORGOPOULOS PHYSICAL REVIEW E63 036123
proach @13–15#, and in particular the phenomenologic
field-theoretic description of condensation and the theory
decay of metastable states. We will formulate the the
through a prism that can be characterized as quant
mechanical: it has been inspired by quantum-mechan
phase transitions, specifically the condensation of a Bose
to a macroscopically occupied ground state~Bose-Einstein
condensation!. In this framework, not only density
functional theory becomes manifest through the appropr
limit, but a unified theoretical framework can be establish

Whereas we will follow the approach of previous fiel
theoretic calculations and some results of a general theor
the decay of metastable states, we will concentrate on
contribution of the translational eigenmodes to the nuclea
rate. According to Ref.@15#, the nucleation rate may be ex
pressed as a function of three factors: the dynamical pre
tor, the statistical prefactor, and the excess droplet free
ergy. For the theory presented here, the determination of
statistical prefactor involves the calculation of the product
the eigenvalues of an integro-differential operator evalua
at the~metastable! uniform and~saddle! nonuniform mean-
field configurations, a calculation considerably more co
plex than that for the square-gradient, local function of Re
@13,15#. The calculation of the dynamical prefactor requir
the determination of the dynamical equations of motion. T
complete calculation of these two factors is left for futu
investigations: herein, we shall concentrate on the contr
tion of the translational eigenmodes. In deriving their con
bution to the nucleation rate, we shall determine their fu
tional form in three dimensions, a plausible result, but to
knowledge not proven before. Thus, we extend previous
culations of the translational eigenmodes to three dimens
without assuming the familiar one-dimensional hyperbo
tangent density profile.

This work is structured as follows. In Sec. II, we prese
our formalism, and we establish a connection to dens
functional theory by deriving the Euler-Lagrange equat
for the order-parameter profile~be it uniform or nonuniform!
starting from a quantum-mechanical Hamiltonian in seco
quantized notation. In Sec. III, we use symmetry argume
in three dimensions to relate the functional form of the tra
lational eigenmodes to the mean-field droplet profile. In S
IV, we formally calculate the contribution of the translation
eigenmodes to the nucleation rate. In Sec. V, as an alte
tive to the numerical solution of the boundary-value integ
differential problem associated to the Euler-Lagrange eq
tion, we propose a variational solution, and we sugges
perturbative calculation involving moments of the prop
~exact! attractive interaction potential. The final section d
cusses and summarizes our findings.

II. FORMALISM

A. Order parameter

Motivated by recent studies of Bose gases and their c
densation transition and in an attempt to relate dens
functional theories and field theoretic descriptions, we sh
consider the physics of a classical first-order phase trans
starting from a quantum-mechanical Hamiltonian. The ra
03612
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nale of our approach is based on recent experimental ob
vations @16# that a gas of interacting bosons in an extern
potential~harmonic trap! condenses to a macroscopic grou
state, i.e., a quantum-mechanical ground state that is ma
scopically occupied. This quantum-mechanical phase tra
tion, predicted by Einstein in the early days of quantu
statistical mechanics@17#, is the well-known Bose-Einstein
condensation. The behavior of the condensate below the
densation temperature has been found~cf. Ref. @18# and ref-
erences therein! to be in very good agreement with predi
tions of classical mean-field theoretical analyses. The or
parameter of the transition is the expectation value of
wave-function operator. Therein lies the proposed analog
tween condensed bosons forming a~quantum mechanical!
ground state ‘‘droplet’’ and a cluster of condensed molecu
forming a liquid droplet. This analog becomes more pla
sible by considering the classical droplet in terms
Langer’s@13# field-theoretic description of condensation.

To make these statements more precise, we conside
local particle densityr(r ) and the total particle number ofN
interacting bosons to be

r~r !5C†~r !C~r !, ~1a!

N5E
V
dr r~r !, ~1b!

whereC and C† are boson annihilation and creation fie
operators, and the integral is taken over the system volu
V. The description of the system in terms of a local density
reminiscent of classical density-functional theories of flu
where the system free energy is expressed as a function
the inhomogeneous fluid densityr(r ).

The dynamics of the system are determined by the ma
body Hamiltonian that in second quantization is written
@18#

Ĥ5E dr Ĉ†~r !F2
\2

2m
“

2GĈ~r !1 1
2 E dr dr 8Ĉ†~r !Ĉ†~r 8!

3Vint~r2r 8!Ĉ~r 8!Ĉ~r !, ~2!

whereVint is the two-particle interaction potential.
Following ideas introduced by Bogoliubov@19#, and later

elaborated by Gross@20# and Pitaevskii@21#, the wave func-
tion may be separated as

Ĉ~r ,t !5F~r ,t !1Ĉ8~r ,t !, ~3!

where the functionF is the expectation value of the fiel
operator and it becomes the Bose macroscopic wave fu
tion. It is no longer an operator, but a regular wave functio
and it plays the role of the order parameter for the ph
transition, the local condensate density being its magnit
squared. Even though more complicated theories exist~such
as the Hartree-Fock-Bogoliubov approximation@22#! where
corrections to the expectation value are taken into acco
many theoretical studies@18# have shown that the mean-fiel
approximation of neglecting~quantum! fluctuations Ĉ8
3-2
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TRANSLATIONAL INVARIANCE IN NUCLEATION . . . PHYSICAL REVIEW E 63 036123
gives good agreement with experimental findings. For B
gases, the validity of the mean-field approximation improv
with decreasing temperature.

The interaction potential is decomposed into two parts
nonlocal part and a local part. In this work, the nonlocal p
will be considered to be solely attractive, whereas the lo
part will be repulsive. Thus, the interaction potential is d
composed as follows:

Vint~r2r 8!5Vatt~ ur2r 8u!1gd~r2r 8!. ~4!

Inclusion of an explicit attractive term in the two-partic
interaction term signifies a departure from usual analyse
Bose-Einstein condensation. However, it is important in t
work because the attractive interaction is essential in desc
tions of gas-to-liquid transitions. We will also show that
has the significant consequence of breaking the symm
between the two uniform stable states. A similar decomp
tion is performed in classical density-functional theor
where the interaction potential is divided into a repulsiv
hard-core part and an attractive part, which for simplicity
usually taken to be a Yukawa or Lennard-Jones~6-12! po-
tential. It should be noted, however, that the nucleation r
will be sensitive to the~choice of the! pair potential. This
very sensitive dependence, that arises from the depend
of the surface tension on the inverse range of the attrac
potential and is explicit in classical nucleation theory, in
cates that it would be very useful, if possible, to determin
method to provide information on the pair potential based
experimentally measured quantities. We will return to t
point later in the text.

The local part is characterized by a single parameterg. In
the quantum-mechanical literature, this approximati
known as the Hartree-Fock approximation, corresponds
considering only binary, hard-sphere collisions, charac
ized by the parameterg. The representation of short-rang
~local! interactions via a single parameter is approximate
it implies the existence of a length scale. In the case of Bo
Einstein condensation,g is proportional to thes-wave scat-
tering length, which is a measure of the strength and rang
the pair potential: in particular, for a hard-sphere fluid t
scattering length is the hard-sphere diameter. In the case
classical theory, the presence of thed function ensures a
hard-sphere excluded volume. Its origin becomes appa
by starting from a lattice~discrete! formulation where thed
function avoids double occupancy of a given lattice site.

The nonlocal part of the interaction will be left unspec
fied for the moment: we shall only require that it be sphe
cally symmetric and of finite range. We will see in Sec.
how a physically motivated, approximate ansatz for the dr
let profile can be used to determine self-consistently the
ments of the attractive interaction weighted by the assum
droplet profile squared. Considering the plausibility~and the
connection to the experimental observations! of this ansatz,
we expect that this methodology will reflect quite accurat
the properties of the nonlocal term.

For a time-independent, real order parameterf(r ), the
free-energy functional that arises from the many-bo
Hamiltonian becomes
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E@f#5E dr F \2

2m
(“f)21 1

2 f ~r !f21
g

2
f4G , ~5!

where the attractive termf (r ) has been defined to be

f ~r !5E dr 8Vatt~ ur2r 8u!f2~r 8!,0. ~6!

The functional corresponding to the grand-canonical pa
tion function, the appropriate ensemble for analyzing fir
order phase transitions, is obtained by performing a L
endre transformation toS5E2mN, where m is the
thermodynamic chemical potential andN5*Vdr f2(r ). Ac-
cordingly,

S@f#5E dr H \2

2m
(“f)22@m2 1

2 f ~r !#f21
g

2
f4J . ~7!

The grand-canonical partition function is obtained by eva
ating a functional integral over all possible field configur
tions, weighted by the Boltzmann probability distributio
@with b5(kBT)21, whereT is the absolute temperature an
kB the Boltzmann constant#,

J[E D@f#e2bS[f] , ~8!

and the appropriate thermodynamic potential is

bV[2 ln~J!. ~9!

The functional integral may be evaluated by the saddle-p
method. The stationary extremum equation is obtained
extremizing the exponentbS@f# with respect to variations
of the fieldf(r ). The appropriate functional derivatives a
discussed in Appendix A. Consequently, for a spherica
symmetric attractive potential, the Euler-Lagrange equat
for the mean-field order parameter becomes

\2

2m
“

2f1@m2 f ~r !#f2gf350. ~10!

In Appendix A, we also derive Eq.~10! by considering a
time-dependent variational principle: the presentation f
lows closely the derivation of the static Gross-Pitaevs
equation in theories of Bose-Einstein condensation. The fi
Euler-Lagrange equation is obtained by rescaling the che
cal potential and the attractive and local interactions
2m/\2 to obtain

“

2f1@m2 f ~r !#f2gf350. ~11!

B. Comparison with previous theories

Equation ~11!, derived from a quantum-mechanic
Hamiltonian and valid ind dimensions, is the integro
differential equation whose study is the main aim of o
work. We will be interested in spatially nonuniform solu
tions, and in particular in the heteroclinic solitary wave s
lution that corresponds to the saddle-point configuration
3-3
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FIG. 1. A schematic diagram of the densi
profile for a spherically symmetric droplet as
function of the distance from the droplet cente
Three different fluid-density regions are clear
indicated: liquid phase, interface, and vap
phase. The droplet radius isRc , while the inter-
facial region, the region between the two vertic
lines, is approximately 2j, wherej is interfacial
correlation length.
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the functional integral. The applicability of this equation, a
of the associated formalism, is quite general since it has b
derived from first-principles quantum mechanics. Of cour
the validity of the theory depends on our assumptions ab
the nature of interparticle interactions~two-body!, the pair-
potential decomposition, and the continuum approximat
~an approximation valid for an order parameter that var
slowly over distances of the order of the interaction ran
which, in a lattice formulation, should be much larger th
the lattice spacing!. The theory can be used equally well
studies of liquids~such as helium! where quantum effects
may be significant, and of classical gases. In the latter c
the square gradient term can be safely neglected~the formal
limiting procedure is\→0) to obtain a classical field
theoretic description of inhomogeneous systems. Such a
scription has many features, and significant differences, w
density-functional theory, as discussed in Ref.@24# and Ap-
pendix B. The approximation of neglecting the kinetic e
ergy of the condensate is known in the Bose gas literatur
the Thomas-Fermi approximation@23#. Thus, in the classica
limit the Thomas-Fermi approximation becomes, for all me
surement purposes, exact.

Equation~11! @and the initial functional Eq.~7!# provides
the desired connection between density-functional theo
of nucleation and field-theoretic descriptions of conden
tion. Similarities to density-functional theories of nucleati
become apparent by noting that the attractive termf (r ) is the
term referred to asfeff(r ) in density-functional theories; see
for example, Ref.@8#. A more detailed comparison of ou
work ~and in particular the limit\→0) with classical
density-functional theory is presented in Appendix B.

For concreteness, we consider the gas-to-liquid transit
even though the arguments used to study supercooling
condensation apply equally well to superheating and cav
tion. We are looking for solutions of Eq.~11! that describe a
liquid dropletlike configuration in contact with a metastab
vapor at a fixed chemical potential. Since the vapor is me
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stable, its chemical potential is greater than the chem
potential of either phase at coexistence, and hence it is
persaturated with respect to its vapor pressure at coexiste
Consequently, the density of the liquid inside the dropletl
solution is not expected to be the liquid density at coex
ence, as shown numerically in Ref.@8#; its value is to be
determined from the solution of the integro-differential equ
tion.

We will use the boundary conditions to specify the loc
interaction parameter. For a uniform fluid the derivativ
vanish, and the attractive termf (r ) becomes position-
independent: its value is determined by the spherically sy
metric interaction at an arbitrary positionr in the system
volume with a background of the uniform fluid of densityr.
Thus, it becomesf (r )5 f 52ar, wherea is the ~positive!
integrated strength of the attractive potential,

a524pE dr r 2Vatt~r !. ~12!

As in density-functional theories where a reference sta
usually taken to be a uniform hard-sphere fluid of densityr,
is defined, Eq.~12! may be used to determine an appropria
‘‘reference’’ state with a density-dependent chemical pot
tial as follows:

m ref~r![m1ar. ~13!

Since the density of a uniform fluid satisfies Eq.~11!, the
local-interaction parameter isg5m ref /r. Note that this pro-
cedure ensures that the uniform fluid density is an extrem
~minimum! of the mean-field thermodynamic potential.

We now consider the case of the droplet being at
origin of the ~spherical! coordinate system. Looking at th
density from the origin outwards, we observe a profile sim
lar to the one sketched in Fig. 1, or, equivalently, to t
profile shown in density-functional-theory works, cf., for e
3-4
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TRANSLATIONAL INVARIANCE IN NUCLEATION . . . PHYSICAL REVIEW E 63 036123
ample, Refs.@8–10#. Given the generic form of the nonun
form density profile, the local-interaction parameter can
specified by considering ther→` limit, namely atr @Rc ,
whereRc is the droplet radius. The approach to the unifo
steady state~the metastable vapor with densityrv) will yield
outside the dropletlike solutionf→Arv. As before, the de-
rivatives vanish in that limit, the attractive term becom
position-independent, and its value is limur u→` f (r )5
2arv . Since far away from the center of mass of the dro
letlike solution the uniform staterv is an asymptotically ex-
act solution,

g5
m1arv

rv
5

m ref~rv!

rv
. ~14!

These similarities with density-functional theory shou
not obscure some important differences. The nonuniform
lution of the Euler-Lagrange equation is a mean-field so
tion, thus fluctuations about it are only accounted for pert
batively in the evaluation of the functional integral.
density-functional theories, the nonuniform density profile
taken by construction to be the profile that minimizes
free energy; the corresponding free energy evaluated a
extremum becomes the intrinsic equilibrium free ener
Therefore, the resulting profile contains fluctuation corr
tions to infinite order, as discussed in Ref.@11# and the Ap-
pendix of Ref. @24#. Of course, applications of density
functional theories to real fluids necessitate approxim
expressions for the reference~hard-sphere! state. The pertur-
bative nature of our work and the associated approximat
with respect to density-functional theory become more p
cise in Appendix B, where we also argue that in the class
limit the natural choice for the order parameter is the flu
density~and not its square root!.

The droplet-profile equation and the corresponding fu
tional Eq.~7! are very similar to the Euler-Lagrange equati
and the correspondingf4 functional proposed in the origina
field-theoretic treatment of condensation@13#. Langer’s argu-
ments were based on the expectation of universality of
phenomenology of condensation, hence the justification
the simplest possiblef4 model that could describe the nucl
ation process. The original analysis was later applied@15# to
the condensation of a supersaturated vapor close to the
cal point by deriving the appropriate free energy by a coa
graining procedure. Our attempt to relate density-functio
theory to macroscopic theories of Bose-Einstein conden
tion is similar in spirit. A significant difference with
Langer’s analysis is the treatment of the symmetry-break
term, i.e., the external field that breaks the symmetry
tween the two uniform stable states.

In the usualf4 Landau-Ginzburg free-energy function
~without a cubic nonlinearity!, the Euler-Lagrange equatio
has three uniform solutions. Two of them are stable with
same free energy while the third is unstable with higher f
energy: it corresponds to a saddle point of the functio
integral. The ad hoc introduction of an external field brea
the symmetry of the two stable states. Thus, the presenc
the external field becomes essential in analyses of first-o
transitions~and consequently of nucleation! since nucleation
03612
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is associated to the occurrence of an unusually large fluc
tion of the metastable state order parameter that is la
enough to overcome the saddle-point free-energy barrier
a result, the system ends up at the stable uniform state, w
is the free-energy global minimum. It is this configuratio
that spatially mediates the transition from the metastable
the globally stable state through the saddle point that has
primary weight and significance in assessing the rate
which nucleation occurs.

The incorporation of a small external field may be phy
cally motivated ~for example, the stabilizing gravitationa
field in studies of gas/liquid interfaces!, however it cannot
significantly contribute to breaking the symmetry of th
steady states. Langer’s methodology@13# and ansatz are
valid only in the limit of a small external field. In particula
the density~the square of the order parameter! of the two
uniform states cannot be altered significantly by the sm
asymmetric term. In this spirit, the order-of-magnitude d
ference between a classical liquid and gas density canno
accounted for by such a small perturbation. Our theory,
ing an integro-differentialf4-type theory, breaks the sym
metry of the steady states by the long-range nature of
attractive potential~as happens in density-functional theor
Refs. @8–11#!. The attractive termf (r ) distinguishesbe-
tween the uniform density states~gas and liquid!, and it gives
rise to a nonuniform profile that asymptotes to the liqu
density close to the origin and to the gas density atr→`. In
this sense, even though the rest of the terms are similar to
ones appearing in a typicalf4 theory, the symmetry-
breaking long-range interaction term has replaced the qu
tatively admissible, but quantitatively insufficient, small e
ternal field perturbation.

Even without solving Eq.~11!, a qualitative argumen
shows how the attractive term breaks the symmetry in n
uniform fluids. Far away from the center of mass of a sphe
cally symmetric dropletlike solution, the background fluid
a metastable vapor of constant density. Thus, the attrac
term becomes2arv . As the center of mass of the droplet
approached, the value of the attractive term becomes de
dent on position, thereby differentiating between the t
phases. The requirement that the liquid density be a solu
of the Euler-Lagrange equation at the center of the dro
implies

lim
ur u→0

f ~r !5
1

rv
@m~rv2r l !2arvr l #. ~15!

Interestingly, at the critical point,r l5rv , the theory be-
comes symmetric. Furthermore, ther→0 limit of the attrac-
tive term implies that the density profile has a nonzero~pos-
sibly very small! gradient within the range of the attractiv
potential.

In closing this subsection, we would like to summari
the aim of this work in presenting such an approach for
theory of nucleation. Our purpose is to unify under a fir
principles setting ~based on firm quantum-mechanic
grounds! two different theories that have been used to stu
nucleation problems: the simplest phenomenological the
that captures the essential characteristics but has many
3-5
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proximations and is not necessarily physically realis
~Langer’s field theoretic description of condensation!, and
the more physically realistic but not motivated by first pri
ciples, nor clearly related to translational invariance, dens
functional theory. We believe that the theory discussed
this work puts under firm ground the connection between
two showing how the features of the phenomenologi
theory are manifested, incorporating in a unified w
translational-invariance effects, and finally having the app
priate limit for a classical gas.

III. BROKEN SYMMETRY AND TRANSLATIONAL
INVARIANCE

The importance of translational invariance in calculatio
of the nucleation rate stems from the observation that
contribution of the translational eigenmodes renders it ex
sive. Formally this arises from the integration over the ze
eigenvalue modes of the linearization around the spati
nonuniform mean-field solution. These Goldstone eig
modes, corresponding to a spontaneously broken continu
symmetry~translational invariance!, are infinitesimal transla-
tions of the droplet interface that leave the functional in
grand invariant. Their degeneracy equals the number of
tial dimensions. For a finite but large system, the eigenva
are not exactly zero, but tend to zero as the system size
to infinity.

As in the case of thef4 functional, the translationa
eigenmodes of the functional Eq.~7! may be related to the
spatial derivatives of the mean-field order-parameter pro
even in the presence of the nonlocal attractive term. T
derivation follows Ref.@13#, without the additional approxi-
mation to neglect the first-order derivative term in the eq
tion that determines the mean-field profile: this approxim
tion is valid close to the coexistence curve, as may be ea
seen by scaling lengths by the critical radius and taking
largeRc limit.

To leading order in fluctuations, these eigenvectors
obtained by linearizing Eq.~11!. We exploit spherical sym-
metry to decompose the order-parameter field into

f~r !5f0~r !1eF1~r ,u,f!. ~16!

The zeroth-order equation becomes

“

2f0~r !1@m2 f 0~r !#f0~r !2
m ref~rv!

rv
f0

3~r !50,

~17a!

with

f 0~r !5E
V
dr 8Vatt~ ur2r 8u!f0

2~r 8!. ~17b!

Equation ~17a! is just the Euler-Lagrange equation th
determines the droplet profile; in addition, the cubic coupl
constant has been specified as discussed in Sec. II.
order-parameter decomposition ensures thatf 0, for a central
03612
-
n
e
l

-

s
e

n-
-
ly
-
us

-
a-
s
es

e,
e

-
-
ily
e

re

g
he

attractive potential, is spherically symmetric. Consequen
by choosing appropriately the coordinate system, Eq.~17b!
takes the form

f 0~r !5
2p

r E
0

`

dr8r 8f0
2~r 8!E

ur 2r 8u

r 1r 8
dz zVatt~z!. ~18!

In the case of the Yukawa potential, Eq.~C1!, integration
over the variablez gives the first equation in the Appendix o
Ref. @8#.

The ordere equation is

“

2F1~r !1@m2 f 0~r !#F1~r !23
m ref~rv!

rv
f0

2~r !F1~r !

22f0~r ! f 1~r !50, ~19a!

where

f 1~r !5E
V
dr 8Vatt~ ur2r 8u!f0~r 8!F1~r 8!. ~19b!

We expressr in spherical coordinates and separate variab
as follows:

F1~r ,u,f!5f1~r !Ylm~u,f!, ~20!

whereYlm(u,f) are the (l ,m) spherical harmonics. Equatio
~19a! reexpressed in spherical coordinates and using pro
ties of the spherical harmonics becomes

F d2

dr2
1

2

r

d

dr
2

l ~ l 11!

r 2
1m2 f 0~r !23

m ref~rv!

rv
f0

2~r !G
3f1~r !Ylm~u,f!22f0~r ! f 1~r ,u,f!50. ~21!

The functional form off1(r ) is obtained by considering
the explicit differentiation of Eq.~17a! with respect to one
Cartesian coordinate, sayx. Differentiation yields

F d2

dr2
1

2

r

d

dr
2

2

r 2
1m2 f 0~r !23f0

2~r !
m ref~rv!

rv
G ]f0~r !

]x

2f0~r !
] f 0~r !

]x
50. ~22a!

The derivative of the attractive term may also be expres
as

] f 0~r !

]x
5sinu cosf

d f0~r !

dr
~22b!

52E
V
dr 8Vatt~ ur2r 8u!f0~r 8!

3
df0~r 8!

dr8
sinu8cosf8. ~22c!

The first equality is a consequence off 0 being a function of
magnituder due to spherical symmetry; the same change
3-6
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variables, of course, applies to]f0(r )/]x. The second was
obtained by changing the differentiation variable fromx to
x8, integrating by parts, and finally dropping the bounda
terms since the interaction potential has a finite range.

Equations~21! and~22! may be compared by considerin
real combinations of thel 51 spherical harmonics: th
l-dependent angular part of Eq.~21! remains unchanged
since the eigenvalue is independent ofm and any linear com-
bination of eigenfunctions of a degenerate energy level
mains an eigenfunction with the same eigenvalue. Since
~21! is linear in Y11, andY111Y11

! ;sinu cosf, the appro-
priate combination is obtained by adding it to its compl
conjugate. Comparison of the resulting equation with E
~22a! shows thatf1(r ) may be identified withdf0(r )/dr.

A similar procedure for the other Cartesian coordina
leads to the conclusion that the three complex translatio
eigenmodes of the three-dimensional Euler-Lagrange e
tion, in the presence of the nonlocal attractive term, are

F1,m~r ,u,f!5
df0~r !

dr
Y1m~u,f! with m50,61.

~23!

IV. TRANSLATIONAL EIGENMODES AND NUCLEATION
RATE

The determination of the nucleation rate from the fun
tional integral Eq.~8! has been discussed extensively in t
past, starting from Langer’s initial calculation@13# ~see, also,
Ref. @27#! and summarized in Ref.@28#. Under some genera
assumptions, for example the existence of a coarse-gra
free energy, small supersaturation, and a Gaussian app
mation of the functional integral, the nucleation rate may
expressed as

I 5
k

2p
V0 exp~2bDS!, ~24!

wherek is referred to as the dynamical prefactor,V0 as the
statistical prefactor, andDS is the excess droplet free energ
~activation energy of the nucleating droplet!,

bDS5bSsaddle2bSmetastable. ~25!

The dynamical prefactor, which depends on dynamical pr
erties of the system, is the initial growth rate of a droplet t
is slightly larger than the critical size. The statistical prefa
tor V0, a generalization of the Zeldovich factor, is a meas
of the phase-space volume of the saddle point. It conta
contributions of Gaussian fluctuations about the~uniform!
metastable and the~spatially nonuniform! saddle-point con-
figurations. It consists of two parts:V, the phase-space vo
ume spanned by the translational eigenmodes~in general, by
all the eigenmodes that correspond to spontaneously bro
symmetries!, and another term that incorporates the effect
all other fluctuations about the metastable and saddle
figurations. The latter part may be viewed as a leading-or
correction to the droplet excess free energy, arising from
configurational entropy of the droplet. The complete expr
sion for V0 is shown in, for example, Ref.@15#, whereas an
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alternative formal expression that relates the nucleation
to the imaginary part of the~true! system free energy is pre
sented in Ref.@28#.

As mentioned in the Introduction, herein we shall conce
trate on the factor that arises from the translational eig
modes. The phase-space volumeV may be reexpressed a
~see, for example, Refs.@26,27#!

V5VJtran, ~26!

whereV is the system volume andJtran is the Jacobian for a
change of variables to the collective coordinates associ
to the translational eigenmodes. The JacobianJtran may be
evaluated by integrating over the translational eigenmod
The volume that these modes span is calculated by no
that the free-energy functional is invariant under translatio
of the droplet center of mass, i.e., it is invariant under tra
formations of the form

df i~r !5F1,i~r !dxi for i 5x,y,z. ~27!

The vectorsF1,i(r ) are orthogonal, real combinations of th
complex translational eigenvector. Since their length is
lated to a volume integral ofF1(r ), their contribution to the
nucleation-rate prefactor becomes

VJtran5E udfxdfydfzu5E
V
dr F 1

3 E
V
dr 8uF1~r 8!u2G3/2

~28a!

5VF4p

3 E
0

`

dr r 2S df0

dr D 2G3/2

. ~28b!

V. DROPLET PROFILE

Our calculations up to this point have been fairly gener
under the previously mentioned assumptions, and spe
cally the interaction-potential decomposition and the requ
ment that the attractive potential be central, the functio
form of the attractive pair potential was left unspecified. If
attractive potential is specified explicitly, then Eq.~17a! can
be solved numerically as an integro-differential bounda
value problem to identify the density profile of the drople

However, in the literature on the subject@8–11#, a number
of potentials—with different decay properties—have be
used to model the attractive interaction@such as the Yukawa
potential, or the Lennard-Jones~6-12! potential usually de-
composed according to the Weeks-Chandler-Anderson@25#
perturbative scheme#; the reason for such choices~in the
density-functional theory approaches! has been mostly sim
plicity in the ensuing numerical computations rather th
detailed modeling of the intermolecular interaction. For th
reason, we follow a different approach: since detailed inf
mation on the interaction potential may not be available
an arbitrary system, we will use physical intuition to devel
an approximate but self-consistent strategy. In particular,
know that close to the center of the droplet, the density
almost constant and equal to a liquid densityr l . On the
3-7
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other hand, away from the droplet surface the den
quickly becomes the metastable vapor densityrv . Hence,
the main density variation occurs over a short interfac
length scale and is quite rapid there, while away from
interfacial region the asymptotic properties~of the liquid in-
side and the vapor outside! are rapidly reached. Furthermor
as pointed out by Langer, a simpler~symmetric! theory with
the expected phenomenological behavior is a Land
Ginzburgf4 free energy in which the density follows a hy
perbolic tangent profile. Hence, based on this argument
the universality suggested by Langer@14#, in addition to the
physical intuition mentioned above, we postulate a drop
profile of the form

f0~r !5c1tanhS r 2Rc

j D1c2 , ~29!

where the constantsc1 andc2 are chosen such that the profi
satisfies the boundary conditions at the origin and at infin

c15 1
2 ~Arv2Ar l !, c25 1

2 ~Arv1Ar l !. ~30!

The variableRc is the radius of the critical droplet andj is
the interfacial correlation length. Equation~29! defines a
family of curves parametrized by the critical radius, a qua
tity that remains unspecified by the differential equation~and
the boundary conditions!: it may, however, be calculate
from the classical theory of nucleation. The density at
center of mass of the droplet will be specified from the n
malization condition on the average number of particles
the system volume~neglecting fluctuation corrections!. A
plot of the proposed droplet-profile trial function is shown
Fig. 1.

The proposed profile is a reasonable approximation o
for Rc@j, i.e., close to the coexistence curve and far aw
from the spinodal or the critical point. It should be remark
that in modeling the density profile, it is desirable to have
smooth functional dependence. Lack of smoothness~as, e.g.,
would be the case for a piecewise constant profile near
origin! would result in highly unphysical discontinuities an
blowups in the derivatives of the profile. Furthermore, p
vious modeling attempts~see, for example, Langer’s work i
Ref. @13#! have used a similar tanh-like approximation th
we believe is the most intuitively appropriate since the p
file approaches the steady-state valueexponentially fastaway
from the surface of the droplet. Nevertheless, for cases w
Rc'j, other profiles have been proposed@26#, but additional
parameters are introduced that have to be determined v
tionally.

For the postulated form of the droplet profile, the Jacob
may be evaluated, up to exponentially small corrections
extensivity, in terms of the polylogarithm functionF(n,z),

Jtran5S 4p

3
c1

2j D 3/2H 22@z1~11z!F~2,2z!#

3~11z! J 3/2

,

~31a!

where

z[exp~2Rc /j!, ~31b!
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and the polylogarithm function, also called Jonqie`re’s func-
tion, is

F~n,z![(
k51

`
zk

kn
. ~31c!

Having analyzed the properties of~and some of the result
that can be obtained using! the postulated droplet wave func
tion, let us analyze now our methodology. Since this pro
is physically plausible, it is natural to expect that the pro
erties of the attractive interaction that are consistent w
such an ansatz@for the solution of Eq.~17a!# should be a
very good approximation to the unknown~exact! attractive
potential. Hence, we will use the droplet profile to determ
the intermolecular interaction potential perturbatively. In e
sence, this becomes an inverse problem, i.e., how to re
struct the attractive potential from the requirement that
proposed function satisfy the integro-differential equati
perturbatively ~to every order, even though for numeric
computations the series has to be truncated at a finite ord!.
The reason we consider such an approach is the previo
mentioned sensitive dependence of the nucleation rate on
interaction range.

This is done by dividing the system volume into thr
regions and matching the solution order-by-order in pert
bation. The system volume is divided into a region close
the center of the droplet wheref05Ar l ~regionA), a region
far away from the origin wheref05Arv ~regionB), and the
transition region where the interface lies~region C). This
division is valid as long as the system is not close to
critical region nor to the mean-field spinodal (j!Rc),
namely the interface is well-defined. The consistency
quirement thatf0(r ) be a solution in regionsA and B is
easily obtained by noting that gradients vanish and the o
parameter attains its limiting value. In the transition regio
the solution is expanded aboutr 5Rc . Schematically, the
profile and the attractive term should satisfy the following

RegionA,

r !Rc ~r→0!, f05Ar l

with

f 0~r !5
1

rv
@m~rv2r l !2arvr l #; ~32a!

regionB,

r @Rc ~r→`!, f05Arv

with

f 0~r !52arv ; ~32b!

transition region,

r 5Rc1y ~y!Rc!,
3-8
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f0~Rc1y!5c21c1S y

j
2

y3

3j3
1

2y5

15j5D 1O@~y/j!7#.

~32c!

The consistency conditions are obtained by requiring that
perturbative expansion in the transition region satisfy
integro-differential equation order-by-order. The ensu
first four self-consistency equations are~it is easy to extend
the series to higher orders!

c2@m2 f 0
(0)#2c2

3 m ref~rv!

rv
1

2c1

jRc
50, O~0!, ~33a!

2
2c1

j3
1

c1

j
@m2 f 0

(0)#23
c1c2

2

j

m ref~rv!

rv
2c2f 0

(1)2
2c1

jRc
2

50,

O~1!, ~33b!

2
c2

2
f 0

(2)1
2c1

jRc
S 1

Rc
2

2
1

j2D 23
c2c1

2

j2

m ref~rv!

rv
2

c1

j
f 0

(1)50,

O~2!, ~33c!

8c1

3j5
2

2c1

jRc
2 S 1

Rc
2

2
1

j2D 2
c2

6
f 0

(3)2
c1

2j
f 0

(2)

1
c1

j3

m ref~rv!

rv
~c2

22c1
2!2

c1

3j3
@m2 f 0

(0)#50, O~3!.

~33d!

The parametersf 0
(n) are the coefficients of the Taylor

series expansion of the attractive term about the critical
dius,

f 0
(n)~Rc![

dnf 0~r !

drn U
r 5Rc

, ~34!

and they provide information on the interaction potenti
they may be considered ‘‘moments,’’ each one involving
nth-order derivative of the potential weighted by the mea
field droplet profile squared. If we assume thatf 0

(0) is a
known property of the potential, in the spirit of knowing th
integrated strength of the attractive potentiala, a set of
closed equations is obtained. The lowest-order equa
~33a! specifies the correlation length~via a complicated non-
linear equation!, and as before the liquid density is dete
mined from the normalization condition, andRc from the
classical theory. Higher-order consistency equations are u
to specify higher-order terms. Having determined the Tay
expansion coefficients of the attractive term, the attrac
potential may be obtained by inverting the equations.
method to perform this inversion and obtain the interact
potential is detailed in Appendix C. It is clear that ev
though this procedure is formally well-defined, its numeric
implementation is nontrivial.
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A remark about the implementation and potential usef
ness of this method, we believe, is in order here. We arg
earlier that the tanh-like profile may be a physically mo
vated choice for the form of the density profile. It is true th
this is only an ansatz and hence the technique prese
above is only approximate. However, the purpose of t
exposition was more general. It was to highlight a theoreti
methodology to extract information on fundamental relatio
and interactions~here, about the attractive potential! from
density profiles: these profiles may be estimated from exp
mental measurements or theoretically suggested. In
spirit, we suggest that the ansatz be considered only as a
example of the method via the following procedure:~i! to
form the density profile~estimated either from the exper
mental data or theoretical arguments!, ~ii ! to fit it to a smooth
function, ~iii ! to Taylor-expand it near the droplet surfac
and ~iv! subsequently to follow the same steps as for
case-study ansatz used above. It should be noted that
rently such measurements of density profiles are not av
able, but partly our scope is to potentially trigger the inter
of experimentalists in attempting to obtain such informatio
We believe that such measurements, in conjunction with t
oretical methods such as the one presented above, could
sibly provide important insights into the nature of fundame
tal interactions of the systems under study.

So far we have described two approaches. First, if
attractive interaction potential is known explicitly, the resu
ing boundary-value integro-differential problem~BVIDP!
can be solved numerically. Second, if the potential is
known, properties of the droplet profile and of the potent
may be determined~approximately! self-consistently, as de
scribed above. However, an alternative and simpler appro
to the solution of the BVIDP may be chosen if the full p
tential is known analytically. Specifically, the solution a
satz, Eq.~29!, may be used as a variational trial function
Eq. ~7!. The extremum of the functional will yield a nonlin
ear equation connectingr l andj. The second required equa
tion will be the normalization condition: thus the solution
this constrained extremization problem will then give t
physical quantities of interest. In the case of a known pot
tial, the third approach is less cumbersome than the
since it involves a solution of only two nonlinear~algebraic!
equations rather the solution of the BVIDP on~all of! the
positive semiaxis~in addition to the algebraic normalizatio
condition!; however, it is consequently more approximate

VI. CONCLUSIONS

In this work, a connection between density-function
theories of nucleation and macroscopic theories of Bo
Einstein condensation was established; it was achieved
adopting a field-theoretic approach along the lines
Langer’s @13# semiphenomenological theory of condens
tion. The motivation for our work was the statistical mecha
ics of Bose-Einstein condensation where the wave func
of the macroscopically occupied ground state of a Bose
becomes the superfluid order parameter. The explicit, s
gested analog~appropriate order parameter! is between con-
densed bosons in the~quantum-mechanical! ground state
3-9
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and, given Langer’s field-theoretic description of conden
tion, a cluster of molecules in the condensed phase
forms a liquid droplet.

By expressing the grand-canonical partition function a
functional integral, and performing a steepest-descent ev
ation, an integro-differential Euler-Lagrange equation for
spatially nonuniform, mean-field droplet profile was derive
The resulting equation is reminiscent of the extremum eq
tion in density-functional theories of nucleation in that
contains a nonlocal attractive term, but it differs in the eva
ation of reference-state properties. A suggested redefin
of the chemical potential in terms of a reference chem
potential was similar to the approach taken in dens
functional theories, where the reference potential is usu
identified with that of a hard-sphere fluid. For a classi
fluid, where the Thomas-Fermi approximation of neglect
the kinetic energy term is applicable, a classical fie
theoretic description of inhomogeneous fluids is obtained
description that was compared and contrasted to clas
density-functional theory.

Apart from the derivation of the profile equation, the em
phasis of our work was on the evaluation of the contribut
of the droplet translational eigenmodes to the nucleation r
As shown in the past@13#, the contribution of the transla
tional eigenmodes to the rate was expressed as the produ
the system volume times the Jacobian for the change o
tegration variables to collective coordinates. We extrac
the part corresponding to the translational modes, leaving
complete evaluation of the statistical and dynamical pref
tors to future investigations. The functional form of the
eigenvectors for the three-dimensional Euler-Lagrange eq
tion was determined under the assumption that the me
field density profile be spherically symmetric, i.e., witho
assuming its explicit functional form, and its relation to t
gradient of the mean-field order parameter was dem
strated.

The solution of the Euler-Lagrange equation that de
mines the ~mean-field! droplet profile was viewed as
boundary value integro-differential problem~BVIDP!: the
solution is necessary for the evaluation of the translatio
contribution to the nucleation-rate statistical prefactor. W
discussed three ways to obtain the solution:~i! If the attrac-
tive potential is known, a complete numerical solution of t
BVIDP on the positive real semiaxis would give an accura
numerical profile of the fluid density;~ii ! a simpler approach
to obtain the profile numerically, if the attractive potential
known, is to use a variational trial function and extremize
functional integral as a function of a single parameter~the
second parameter is enslaved to it by the normalization c
dition!; and ~iii ! for the most relevant case in which the i
termolecular interaction is not known explicitly, a physica
motivated ansatz profile was proposed. This ansatz in c
junction with the Euler-Lagrange equation provides su
cient information to obtain formally the parameters of t
ansatz as well as the~approximate evaluation of! properties
of the attractive potential in an inverse-problem sense
highlighted in Sec. V and in Appendix C.

It should be remarked that in this first part of our work
the role of translational invariance in theories of nucleati
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we were primarily concerned with the formulation of a ge
eral theory to tackle such problems. The formulation is qu
general, subject, of course, to the assumptions discusse
the text~for example, the continuum approximation and t
assumptions about the interaction potential! and can be ap-
plied to various systems of experimental interest. It has
major advantage that it puts in contact and in perspective
connection between the simplest phenomenological the
that captures the essential physics of a first-order phase
sition and more rigorous and modern methodologies
density-functional theory, thereby providing a unified view
point to such methodologies. The second part of this stu
currently in progress, will instead focus on special case st
ies of systems for which other theoretical approaches as
as experimental results have appeared in the literature.
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APPENDIX A: TIME-DEPENDENT VARIATIONAL
PRINCIPLE

We rederive the droplet-profile equation by following th
arguments used to obtain the Gross-Pitaevskii equation
theories of Bose-Einstein condensation. In doing so, we
also show how the functional derivatives of Eq.~7! are
evaluated to obtain Eq.~10!. As argued in Ref.@18#, the
Euler-Lagrange equation for the steady-state, nonunifo
droplet configuration may be derived from the variation
principle

i\
]

]t
F~r ,t !5

dE@F,F!#

dF!~r ,t !
, ~A1!

where the energy functionalE is

E@F,F!#5E dr 8F \2

2m
u“F~r 8,t !u21 1

2 F~r 8,t !uF~r 8,t !u2

1
g

2
uF~r 8,t !u4G . ~A2!

The contribution of the attractive potential has been incor
rated in the function

F~r 8,t !5E dr 9Vatt~ ur 82r 9u!uF~r 9,t !u2. ~A3!

The Euler-Lagrange equation for the order parame
F(r ,t) is obtained by extremizing the energy function
E@F,F!#. The functional derivatives of the kinetic energ
3-10
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and the local repulsive interaction term are easily obtain
keeping in mind that the fieldsF and F! are independent
The extremum of the nonlocal attractive interaction term

Uattr@F,F!#[ 1
2 E dr 8F~r 8,t !F~r 8,t !F!~r 8,t ! ~A4!

becomes

dUatt@F,F!#

dF!~r ,t !
5 1

2 F~r ,t !F~r ,t !1 1
2 E dr 8

dF~r 8,t !

dF!~r ,t !
F~r 8,t !

3F!~r 8,t !. ~A5!

The functional derivative in the integrand evaluates to

dF~r 8,t !

dF!~r ,t !
5Vatt~ ur 82r u!F~r ,t !. ~A6!

Note that in the above two equations, we have used
lemma

dF!~r ,t !

dF!~r 8,t !
5d~r2r 8!. ~A7!

Upon substitution to the initial equation~A5!, the functional
derivative becomes

dUatt@F,F!#

dF!~r ,t !
5 1

2 F~r ,t !F~r ,t !1 1
2 F~r ,t !

3E dr 8Vatt~ ur 82r u!uF~r 8,t !u2. ~A8!

As argued in the main text, and in agreement with dens
functional studies of nucleation@8–11#, the main assumption
about the attractive potential is that it be central@thus,
Vatt(r 82r )5Vatt(r2r 8)]. Therefore,

dUatt@F,F!#

dF!~r ,t !
5F~r ,t !F~r ,t !. ~A9!

Consequently, the time-dependent variational equation
comes

i\
]

]t
F~r ,t !52

\2

2m
“

2F~r ,t !1F~r ,t !F~r ,t !

1guF~r ,t !u2F~r ,t !. ~A10!

The Euler-Lagrange equation for the time-independ
~nonuniform! spatial profile of the droplet wave functio
f(r ) that will mediate the transition between the liquid a
vapor phase is obtained by considering a time-dependen
lution of the form

F~r ,t !5f~r !exp~2 imt/\!, ~A11!

wherem is, as defined in the main text, the thermodynam
chemical potential associated to theN particles in the system
03612
d,

e

-

e-

t

o-

c

volume, and as beforef is real and normalized to the tota
number of particles,N5*Vdr f2(r ). Then the Euler-
Lagrange equation~a modified static Gross-Pitaevskii equ
tion! becomes

\2

2m
“

2f1@m2 f ~r !#f2gf350, ~A12!

where the functionf (r ) has been defined in the main tex
Eq. ~6!: Equation~A12! is identical to Eq.~10! in the main
text.

APPENDIX B: CLASSICAL LIMIT

As argued in the main text, the Thomas-Fermi appro
mation is applicable to classical fluids. This approximatio
which consists of dropping the kinetic-energy term, is o
tained by taking the\→0 limit of Eq. ~7! to yield

S@f#5E dr H 2@m2 1
2 f ~r !#f21

g

2
f4J . ~B1!

The leading-order term in the saddle-point evaluation of
functional integral Eq.~8! gives the following mean-field
expression for the grand-canonical thermodynamic poten
@via Eq. ~9!#:

V@f0#5E dr H 2@m2 1
2 f 0~r !#f0

2~r !1
g

2
f0

4~r !J ,

~B2!

wheref0(r ) is the solution of the Euler-Lagrange equatio
@Eq. ~17a!# and f 0 was defined in Eq.~17b!. Equation~B2!
may be reexpressed in terms of the local densityr(r ) as
follows:

V@r~r !#5
g

2E dr r2~r !2mE dr r~r !

1 1
2 E dr dr 8Vatt~ ur2r 8u!r~r !r~r 8!. ~B3!

This equation is to be compared to the density-functio
expression for the grand-canonical potential@for example,
Eq. ~2.8! in Ref. @8##, namely

VDFT@r~r !#5E dr f h@r~r !#2mE dr r~r !

1 1
2 E dr dr 8w2~ ur2r 8u!r~r !r~r 8!,

~B4!

where we have followed their notation for the pair attracti
potentialw2(r ), and f h@r# is the Helmholtz free energy pe
unit volume of a uniform hard-sphere fluid of densityr. In
the spirit of density-functional theory, the density of the flu
~be it uniform or nonuniform! is obtained by setting the func
tional derivative ofV with respect tor(r ) equal to zero.
3-11
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Comparison of Eqs.~B3! and ~B4! shows the similarities
and differences between the two approaches. Equation~B3!
is a mean-field expression: higher-order terms may be ad
perturbatively by considering fluctuation corrections. T
density-functional expression contains fluctuations of all
ders, but it necessitates the introduction of a reference s
@in the case of Eq.~B4! taken to be the uniform hard-sphe
fluid#.

For a concrete comparison of the two approaches, we c
sider the limit of a uniform fluid. As argued in the main tex
g is related to properties of the reference state, and i
specified by the requirement that the solution of the Eu
Lagrange equation have the appropriate asymptotic~physi-
cal! limits @see the discussion above Eq.~14!#. Hence, its
value ensures that the uniform-stateV is evaluated at its
minimum. The uniform fluid density, however, is not dete
mined self-consistently, but it is specified as a boundary c
dition. On the other hand, in classical density-function
theory, the uniform fluid density is determined from the e
tremum~minimum! equation, at the expense of introducing
physically reasonable and numerically accurate refere
state. Finally, Eq.~B3! suggests that in the classical limit th
natural choice for the order parameter is the local fluid d
sity r(r ).

APPENDIX C: DETERMINATION OF THE ATTRACTIVE
POTENTIAL AS AN INVERSE PROBLEM

We argued in the main text that the consistency con
tions specifyf 0

(n)(Rc), the Taylor expansion coefficients o
the attractive termf (r ) about the critical radius. The inver
sion to determine the potential may be done perturbativ
based on the spherically symmetric form Eq.~18!. For sim-
plicity we require that, as the second integrand in this in
gral suggests,zVatt(z) be differentiable at the origin: this i
the case for the most frequently used potentials, such as
Yukawa potential,

VYukawa~r !52al3
exp~2lr !

4plr
, ~C1!

where a is the integrated strength andl the range of the
attractive potential, or a model potential with anr 26 attrac-
tive tail @29#,

V6~r !52es6~r 21s2!23, ~C2!

with s a measure of the molecular diameter ande a ~posi-
tive! constant that characterizes the strength of the poten
03612
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Furthermore, to simplify the formal calculations, we sh
require that the potentialVatt(r ) be an even function. Thus
the expansion gives

zVatt~z![Ṽatt~z!5 (
n50

`
z2n11

~2n11!!
Ṽatt

(2n11)~0!. ~C3!

The general expansion of Eq.~18! about the critical radius is

f 0~Rc1y!5
2p

Rc
E

0

`

dr8r 8f0
2~r 8!(

l 51

` S 2
1

Rc
D l 21

3 (
n50

` Ṽatt
(2n11)~0!

@2~n11!#! (
k50

2(n11) S 2~n11!

k D
3@~Rc1r 8!2(n11)2k

2uRc2r 8u2(n11)2k#yl 1k21. ~C4!

This expansion is to be compared and equated order
order in perturbation with the Taylor-series expansion of
attractive term. Such a comparison gives

f 0
(m)~Rc!5

2p

Rc
(
n50

` Ṽatt
(2n11)~0!

@2~n11!#!
cn~Rc ,m!, ~C5!

wherem5 l 1k21 and the coefficients are

cn~Rc ,m!5E
0

`

dr8r 8f0
2~r 8! (

l 51,0<k<2(n11)

l 1k215m S 2
1

Rc
D l 21

3S 2~n11!

k D @~Rc1r 8!2(n11)2k

2uRc2r 8u2(n11)2k#. ~C6!

Hence, an explicit expression for thenth-order derivative
f 0

(n)(Rc) was obtained in terms of properties of the attract
interaction potential, Eqs.~C5! and~C6!. If the expansion of
the attractive potential, Eq.~C3!, is truncated to the firstn
terms, and the (n21)th-order derivatives are obtained fro
the self-consistency conditions, Eqs.~33!, a linear system of
n equations for n unknowns, the Ṽatt

(2k11)(0) with k
50, . . . ,n21, is obtained. Thus then3n system of equa-
tions may be inverted to obtain the unknown attractiv
interaction parameters. It is apparent that whereas
scheme is formally well-defined, it is difficult to implemen
it numerically.
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